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A B S T R A C T

	 Frigate tuna (Auxis thazard, Lacepede, 1800) is a commercially valuable food fish thriving in tropical 
marine waters. In the Philippines, despite its abundance, information on its estimated age and growth patterns 
is lacking. This study reported the relationship between the size (fork length, FL) and age (otolith growth 
increment) of frigate tuna using the sagittal otoliths. Sampling was conducted in the Celebes Sea, including 
the inner bay and gulfs within it (e.g., Moro Gulf, Sarangani Bay, and Davao Gulf) from November 2020 
to September 2022. A total of 1,046 frigate tuna samples with sizes ranging from 14.5 cmFL to 44.7 cmFL, 
caught using ring nets, hand lines, and purse seine nets, were examined. Results of the aggregated fish length-
weight relationship (R2 = 0.9819; a = 0.0068; b = 3.2632) indicated a strong positive allometric growth pattern. 
Similarly, a strong positive correlation (R2 = 0.7130) between the otolith length (n = 344) and fork length 
relationship indicates that the otolith increases in length as the fish grows. However, for the successfully aged 
otolith sections, only individuals collected in the western Celebes Sea (n = 113) demonstrated a good result 
covering ages ranging from one to four years old. From this information on the age-growth relationship, the 
von Bertalanffy growth function model generated the following values for L∞ at 62.1 cmFL and K at 1.0016/yr. 
The latter growth parameter estimates from otolith microstructure is the first record for frigate tuna derived 
from the age-length data. 
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1 .  I N T R O D U C T I O N

Frigate tuna (Auxis thazard, Lacepede, 1800) is 
a warm water species among the pelagic neritic 
tuna that thrives up to 50 m depth (Collette 

and Nauen 1983; Uchida 1981; Liu 2008; Ajik and 
Tahiluddin 2021; Zhou et al. 2022). Records of its 
maximum size in fork length (FL) range from 58.0 
cm in Sri Lanka (Collette and Nauen 1983) to 65.0 cm 
in the eastern tropical Atlantic (Morice 1953). This 
species is highly migratory, often observed in schools 
with other scombrids, (Maguire et al. 2006; Gomez 
2019) and reported to spawn along its migration route 
within the Pacific Ocean, which passes through the 

Philippines (Ratilla et al. 2016). Pedrosa-Gerasmio 
et al. (2015) reported that this species has no distinct 
genetic population in the Southern Philippine Seas, 
including Palawan, Indonesia, and Malaysia, which 
reinforces the fact that they are migratory. In the 
Philippines, it is locally known as “bodboron”, “perit,” 
or “mangkoh” and it is one of the most sought-after 
scombrids due to its lucrative value (Llanto et al. 
2018). In 2021, it ranked second and accounted for 
20.3% (93,783.72 MT) of the country's total 462,400.9 
MT volume production of tuna species (Bureau of 
Fisheries and Aquatic Resources 2022).
		 Along the country’s vast coastlines, General 
Santos City is a known fish landing site for frigate tuna 
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and its other relatives (Zaragosa et al. 2004; Pechon 
et al. 2022), primarily due to its proximity to the 
tuna-fishing grounds in the Celebes Sea, specifically 
the inner seas (e.g., Sarangani Bay, Davao Gulf, and 
Moro Gulf) (Figure 1). Furthermore, the city has 
been dubbed the “Tuna Capital of the Philippines'' 
because of the high volume of daily landed tuna 
catch (Yu 2010; Macusi et al. 2015; Prieto-Carolino 
et al. 2021). In 1994, the General Santos City Fish 
Port Complex (GSCFPC) was built (Israel 2000) and 
has since supplied fresh tuna for the six processing 
plants in the city (Nanardx 2016). From 2013 to 2017, 
the accumulated catch of frigate tuna contributed 
4.6% (17,662.0 MT) to the 384,140.0 MT of the total 
number of all tuna species landed in GSCFPC (Pechon 
et al. 2022).
		 However, despite frigate tuna’s economic 
contribution to the Philippines, none so far has 
attempted to study the relationship between the 
direct age and growth of frigate tuna. All studies 
were based on length-frequency analysis (Ingles and 
Pauly 1984; Armada 2004; Calicdan-Villarao et al. 
2017). It has to be recalled that stock assessment and 
appropriate management schemes are vital keys to the 
sustainability of a fishery resource. Nowadays, fisheries 
management stock assessment models heavily depend 
on the data on size-at-age and growth (Murua et al. 
2017), which requires precise age information of 
the species (Campana 2001; Xu and Xu 2017). Thus, 
the otolith age-based approach gained popularity 

because it offers the most accurate, reliable, and easily 
discernible increments of annual growth (Secor et 
al. 1992; Campana and Thorrold 2001; Robbins and 
Choat 2002; Begg et al. 2005; Phelps et al. 2007; Gunn 
et al. 2008; Choat et al. 2009; Zhiming et al. 2018). 
Although only a few quantified the age and growth 
of frigate tuna using the length-frequency approach 
and counted spines and vertebral increments (Silas 
et al. 1985; Marriott and Cappo 2000; Ghosh et al. 
2010; Khan et al. 2011; 2012; Tao et al. 2012; Calicdan-
Villarao et al. 2017; Mudumala et al. 2018; Lelono and 
Bintoro 2019; Vieira et al. 2022), no present study has 
investigated counting otolith increments.
		 Here, we examined the otolith growth 
increments of frigate tuna individuals within the 
Celebes Sea. The objectives of this study were to (1) 
establish a correlation between the fish length-weight 
and the fish length-otolith length relationships and (2) 
compare and provide baseline information on its age 
and growth patterns across study sites. The contribution 
of this paper is to improve the utility of frigate tuna’s 
stock assessment models and significantly impact the 
crafting of policies for its fisheries management plans.

2 .  M E T H O D S

2.1 Sample collection

		 All frigate tuna samples were collected from 
different fish landings and wet markets within the 

Figure 1. Map showing the study locations within the Southern Philippine Seas composed of Sarangani 
Bay (SB), Moro Gulf (MG), Davao Gulf (DG), and Celebes Sea (CS). Bathymetry details adapted and 
modified from Alcala et al. (2008).

Celebes Sea (Figure 
1), from November 
2020 to September 
2022. Most of the 
collected fish samples 
from GSCFPC came 
from Moro Gulf and 
Celebes Sea, while 
only very few samples 
were from Davao Gulf. 
The Sarangani Bay 
samples were collected 
from the fish landings 
and wet markets in 
Kiamba, Sarangani 
Province. Additional 
samples were also 
collected from the 
town of Bongao, 
Tawi-Tawi Province. 
Strategic sampling was 
employed to represent, 
as much as possible 
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the various size classes reported by the Bureau of 
Fisheries and Aquatic Resources - National Stock 
Assessment Program (2018). These size classes are as 
follows: size 1: < 20.0 cmFL; size 2: 20.1–30.0 cmFL; 
size 3: 30.1–40.0 cmFL; and size 4: > 40.1 cmFL. 
During the collection process at each landing site, the 
types of fishing gear used by large private tuna fleets 
and local fishers were noted. Commercial fishing 
vessels commonly employ ring nets (locally known as 
“likum-likum” or “pangulong”) and purse seine nets 
(“pangulong”) to catch tuna (Dickson and Natividad 
2000; Armada 2004; Macusi et al. 2015; Llanto et al. 
2018), whereas local fishers use hand lines (“kawil,” 
“pasol,” or “bira-bira”), particularly those that fish in 
Sarangani Bay (West et al. 2011). Ring nets (known 
to locals as “kulibo”) are commonly employed in the 
waters of Tawi-Tawi (Ajik and Tahiluddin 2021) or 
on the western side of the Celebes Sea. All fishing 
activities that occurred in all areas were found to 
be closer or within fish aggregating devices (FADs), 
locally known as “payao” (Barut 2002; Dickson and 
Natividad 2000; Hipolito and Vera 2006; Macusi et al. 
2015).
		 All collected tuna samples were brought to the 
Histopathology and Molecular Biology Laboratories 
at the Regional Science Research Center (RSRC), 
Mindanao State University, Fatima, General Santos 
City (MSU-GSC), for further processing. On the other 
hand, samples from Tawi-Tawi were processed on-site 
up to otolith extraction at the wet laboratory of the MSU 
- Tawi-Tawi College of Technology and Oceanography 
(MSU-TCTO). Each sample was processed as follows: 
labeling of each specimen, fish morphometrics 
determination (e.g., individual length and weight) 
and otolith extraction. For the otolith preparation, 
the following steps were 
followed: image processing, 
section preparation, and 
lastly, the annual growth 
increment readings (Nañola 
and Fortaleza 2023).

2.2 Fish morphometrics 
and length-weight 
relationship

	 Each tuna sample 
collected was weighed for its 
body weight (BW; 0.1 g). The 
standard fish measurements 
such as fork length (FL at 0.1 
cm; measured from the tip of 
the tuna’s snout to the fork of 

the tail), standard length (SL at 0.1 cm; measured from 
the tip of the tuna’s snout to the posterior of the last 
vertebra), total length (TL at 0.1 cm; measured from 
the tip of the tuna’s snout to the most posterior of 
the caudal fin), and body girth (at 0.1 cm; measured 
around the body at its largest point) were also taken. 
The length-weight relationship was calculated using a 
power regression function defined by the equation W 
= aLb (Ricker, 1975), where ‘a’ is the proportionality 
constant or intercept and ‘b’ is the exponent. The ‘b’ 
value indicates whether a somatic growth is allometric 
(b < or > 3) or isometric (b = 3) (Anibeze 2000; Froese 
2006).

2.3 Otolith morphometrics

		 The pair of sagittal otoliths from each fish 
individual was carefully extracted from its head 
through the open-the-hatch technique (Secor et al. 
1992). Only one perfectly extracted otolith of each 
pair (Elumba et al. 2019) was examined under a stereo 
microscope (Motic SMZ171) and photographed using 
a mobile phone. The otolith photomicrographs were 
analyzed through an open-source software (OSS), the 
ImageJ software v.4.0. The variables measured were 
as follows: otolith length (OL), otolith width (OW), 
otolith perimeter (OP), and otolith area (OA). All 
measurements were recorded in millimeters (0.01 
mm) except for OA, which is expressed in mm2. 
Furthermore, OL is described as the distance from the 
anterior tip to the posterior tip (Figure 2). Whereas, 
OW is the distance perpendicular to the length passing 
through the core (Hunt 1992) (Figure 2). OA was 
measured based on the perimeter length of the otolith 
generated from ImageJ software that automatically 

Figure 2. Photomicrograph of a sagittal otolith of frigate tuna (FL = 30.9 cm) with 1 mm scale bar 
for size reference. Image taken by ACHedoquio.
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converts the units into an area (Manginsela et al. 2020; 
Yedier 2021).

2.4 Otolith sectioning

		 As previously described by Wild and 
Foreman (1980), there are no significant differences 
in the micro-incremental growth between the left 
and right otoliths of tropical tuna species. Thus, when 
available, the left otoliths were prioritized for age 
estimation. Otherwise, their right counterpart was 
used. The grind-and-polish method of Robbins and 
Choat (2002) was followed to section each otolith. A 
CrystalbondTM 509 was used as a mounting medium 
while varying sandpaper grits (P800, P1200, and 
P1500) were used to grind each side of the otolith 
manually (Adam et al. 1995; Doray et al. 2004). While 
doing the manual grinding, drops of tap water were 
added frequently to lessen the friction between the 
otolith and sandpaper (Charles et al. 2013). At the 
final grinding stage (after flipping over the otolith), 
the exposed section of the otolith was lastly polished 
using a 3-micron lapping film for a smoother finish. 
During the last step, the sagittal otolith was regularly 
examined under a light compound microscope (LW 
Scientific; 100X magnification) to view the annuli 
and growth micro-increments. Along this final step, 
regular viewing under the microscope was needed as 
this is the crucial stage of the grinding process to avoid 
sanding away the increments caused by over-grinding. 
It was also observed that there is no standard thinness 
of the transverse sections, as the appearance of the 
core and annuli varied among different otolith sizes. 
Lastly, the burning technique by Thorogood (1987) 
was applied as needed to enhance the contrast of the 
dark and light bands, which provides a well-processed 
section of good-quality 
otolith.

2.5 Otolith 
increment reading

	 Each duly 
prepared transverse 
section was examined 
under a compound 
light microscope (LW 
Scientific) at 100X and 
400X magnification for 
the increment reading. 
An annual growth 
increment of an otolith 
was identified through 

Figure 3. Photomicrograph of a transverse section of the left sagittal otolith of frigate tuna (FL = 39.9 cm) 
with labeled parts of an otolith section; examined under 100X magnification.

alternating opaque and translucent zones (Degens et 
al. 1969; Kalish et al. 1985; Lou 1992) (Figure 3). A 
double-blind method developed by Clear et al. (2000) 
was employed to estimate the age of each otolith 
section. Due to the more explicit rings observed in the 
medio-ventral ‘long’ arms compared to the medio-
dorsal ‘short’ arms of the otolith sections, the annuli 
were quantified from the ‘long’ arms (Stéquert et al. 
1996) (Figure 3).  Additionally, photomicrographs of 
each sample were captured using a similar microscope 
and mobile phone camera. Compiled pictures of 
each otolith were digitally enhanced using a Portable 
Photoshop C6, and counting for annuli rings 
proceeded.

2.6 Otoith ageing and growth analysis

		 All age and length data were processed per 
location of the fishing grounds (i.e., Sarangani Bay, 
Moro Gulf, Davao Gulf, and at the western part of 
the Celebes Sea) and per gear type (i.e., purse seine, 
hand line, and ring net). A separate run of pooled data 
was also generated. Moreover, a box plot technique 
was employed for both sets of the data to identify 
and remove outliers (e.g., peculiar readings from 
overly ground, wedged, and broken otolith sections) 
(Elumba et al. 2019) for better visualization of the 
age composition of the frigate tuna samples. To 
demonstrate the growth pattern,  the von Bertalanffy 
growth function (VBGF) model with a 95% level of 
confidence was utilized, as commonly employed for 
pelagic tuna species (Farley et al. 2006). This model 
was based on length-at-age data using the non-linear 
least-squares method, as described by the equation, 
Lt=L∞(1-e-k(t-t

0
)), where the Lt represents the length at 

age t, t signifies the age and t0 denotes the hypothetical 
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age when the fish has a length of zero. The age at a 
settlement length of 1.5 cmFL was employed to 
illustrate the growth curve better (Elumba et al. 2019). 
The L∞ function is the asymptotic length (maximum 
length), and K (a positive constant) is defined as 
the resulting growth coefficient of the fish. Both 
visualizations (box plot and growth curve) were 
generated using the Paleontological Statistics (PAST) 
software v.4.03.

3 .  R E S U L T S

3.1 Length-weight relationship

		 A total of 1,046 frigate tuna samples were 
collected, processed, and analyzed across the sampling 
locations. The collected samples were dominated by 

Morphometric variables/unit Mean ± SD Minimum Value Maximum Value

Standard Length (SL); cm 23.9 ± 2.2 14.0 41.8

Fork Length (FL); cm 25.5 ± 2.3 14.5 44.7

Total Length (TL); cm 26.9 ± 2.5 15.5 46.8

Body girth; cm 15.6 ± 1.9 6.0 34.0

Body Weight (BW); g 307.7 ± 123.2 42.0 1,760.0

Table 1a. Mean, minimum, and maximum values of the morphometric variables of the A. thazard individuals sampled in the Celebes Sea; 
n = 1,046.

Morphometric variables/unit Mean ± SD Minimum Value Maximum Value

Standard Length (SL); cm 22.2 ± 4.0 15.2 39.5

Fork Length (FL); cm 23.4 ± 4.1 15.8 42.0

Total Length (TL); cm 24.5 ± 4.3 16.5 43.5

Body girth; cm 15.3 ± 3.1 6.0 31.3

Body Weight (BW); g 211.6 ± 150.4 50.0 1,510.0

Table 1b. Mean, minimum, and maximum values of the morphometric variables of the A. thazard individuals sampled from Sarangani Bay; 
n = 244.

the areas from the western part of the Celebes Sea 
(37.0%) and Moro Gulf (34.0%). Very few samples 
were collected from Sarangani Bay (23.3%), and in 
Davao Gulf (5.6%). Overall, the recorded body weight 
ranged from 42.0 g to 1,760.0 g, with a mean value of 
307.7 g.
	 Across all sites, the morphometric parameters 
observed have the following mean values for SL (23.9 
cm), FL (25.5 cm), TL (26.9 cm), and body girth (15.6 
cm). The minimum values are as follows: SL (14.0 cm), 
FL (14.5 cm), TL (15.5 cm), and body girth (6.0 cm). 
Moreover, the maximum values are as follows: SL (41.8 
cm), FL (44.7 cm), TL (46.8 cm), and body girth (34.0 
cm) (Table 1a). The minimum and maximum values 
for SL, FL, and TL per sampling areas are presented 
in Tables 1b to 1e. Among these sites, the western 
Celebes Sea (FL: 15.2 to 44.7 cm) has the broadest size 

Morphometric variables/unit Mean ± SD Minimum Value Maximum Value

Standard Length (SL); cm 23.7 ± 3.5 14.0 33.0

Fork Length (FL); cm 25.4 ± 3.6 14.5 35.5

Total Length (TL); cm 26.8 ± 3.9 15.5 37.0

Body girth; cm 15.6 ± 2.2 9.0 21.8

Body Weight (BW); g 280.7 ± 119.3 65.0 758.0

Table 1c. Mean, minimum, and maximum values of the morphometric variables of the A. thazard individuals sampled from the Moro Gulf; 
n = 356.

Morphometric variables/unit Mean ± SD Minimum Value Maximum Value

Standard Length (SL); cm 22.2 ± 3.0 19.0 38.0

Fork Length (FL); cm 23.9 ± 2.8 20.0 39.5

Total Length (TL); cm 25.3 ± 3.1 22.0 41.0

Body girth; cm 14.1 ± 2.2 12.0 27.1

Body Weight (BW); g 222.1 ± 144.4 120.0 1,200.0

Table 1d. Mean, minimum, and maximum values of the morphometric variables of the A. thazard individuals sampled from the Davao 
Gulf; n = 59.
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Morphometric variables/unit Mean ± SD Minimum Value Maximum Value

Standard Length (SL); cm 23.9 ± 2.2 14.0 41.8

Fork Length (FL); cm 25.5 ± 2.3 14.5 44.7

Total Length (TL); cm 26.9 ± 2.5 15.5 46.8

Body girth; cm 18.2 ± 5.6 7.6 34.0

Body Weight (BW); g 307.7 ± 123.2 42.0 1,756.0

Table 1e. Mean, minimum, and maximum values of the morphometric variables of the A. thazard individuals sampled from the western 
Celebes Sea; n = 387.

class representation.
	 Utilizing the entire dataset, the logarithmic 
regression analysis shows that the FL and BW of the 
frigate tuna have a strong relationship, as reflected by 
an R² value of 0.9819 and as described by the equation: 
BW = 0.0068FL3.2632 (Figure 4a). The exponent value 
(b > 3) indicates that the species follows a positive 
allometric growth, implying that the frigate tuna 
becomes more robust as it grows. The FL-BW 
relationships per area are presented in Figures 4b to 
4e.
	 Results reveal apparent variations in the size 
length distribution of frigate tuna samples per gear type 
(Figure 5) and sampling location (Figure 6). Among the 
gear types used, the ring net was observed to represent 
the broadest size class (15.2 to 44.7 cmFL) with a nice 

Figure 4a. Pooled data for length-weight relationship (LWR) of 
frigate tuna individuals sampled across all the sampling sites; n = 
1046. Outliers were attributed to empty or full gut. 

Figure 4b-e. Length-weight relationship (LWR) of frigate tuna individuals sampled across from the different 
sampling sites; b) Sarangani Bay: n = 244; c) Moro Gulf: n = 356; d) Davao Gulf: n = 59; e) western Celebes Sea: 
n = 387. Outliers were attributed to empty or full gut. 
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Morphometrics variables/unit Mean ± SD Minimum value Maximum value

Otolith Length (OL), mm 2.44 ± 0.33 1.40 3.97

Otolith Area (OA), mm2 1.48 ± 0.31 0.08 2.82

Otolith Width (OW), mm 0.99 ± 0.08 0.12 1.35

Otolith Perimeter (OP), mm 11.52 ± 1.23 5.51 19.91

Body Weight (BW); g 307.7 ± 123.2 42.0 1,756.0

Table 2. Mean, minimum, and maximum values of the morphometric data of the left sagittal otoliths of the sampled A. thazard individuals; 
n = 344.

bell-shaped pattern, dominated by individuals with 23.0 
cmFL (Figure 5). On the other hand, those individuals 
caught by handline with size classes ranging from 15.8 
to 42.0 cmFL are skewed to the left, dominated by 
individuals with a size of 24.0 cmFL (Figure 5). Lastly, 
the catch of large fishing vessels using purse seine nets 
that landed their catch at GSCFPC has the same bell-
shaped pattern as the ring net and handline catches, 
but unlike the former, it lacks the largest size class 
individuals (Figure 5). Whereas, per sampling area, the 
western Celebes Sea had a balanced bell-shaped curve 
with a peak at a size of 30.0 cmFL (Figure 6). While 
the rest of the other areas (e.g., Sarangani Bay, Moro 
Gulf, and Davao Gulf) demonstrate skewed curves 
leaning to the left, being dominated by small-sized class 
individuals (Figure 6).

3.2 Otolith microstructure

	 Out of 1,046 frigate tuna samples, only 344 
individuals with lengths ranging from 15.5 to 44.7 
cmFL with at least one otolith each were utilized 
for the sagittal otolith microstructure analyses. This 
provided a success rate of only 32.9%. Despite all 
efforts in carefully handling them, many were missed 
out, chipped, or broken during the extraction process 
because of their size (<3.97 mm), composition, and 
fragility. Damage also occured during the image 
processing and mounting preparation in the glass 
slide. The OL varies between 1.40 mm and 3.97 mm, 
and the OW ranges from 0.12 to 1.35 mm. Similarly, 
the OP extends from 5.51 to 19.91 mm, whereas the 
OA spans from 0.08 to 2.82 mm2 (Table 2).

Figure 5. Comparison of the midlength frequency distribution of the frigate tuna caught by the 
different fishing gears; handline: n = 327; purse seine: n = 271; ring net: n = 448.

Figure 6. Comparison of the midlength frequency distribution of the frigate tuna caught from the 
different sampling sites: Sarangani Bay: n = 244; Moro Gulf: n = 356; Davao Gulf: n = 59; western 
Celebes Sea: n = 387.
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3.3 Fish length and otolith length relationship

		 The linear relationship between the FL and OL of 
frigate tuna showed a positive relationship, as indicated 
by its R2 value (0.7130) (Figure 7).  This clearly implies 
that as the tuna grows in length, its otolith also grows.

Figure 7. The relationship between fork length and otolith length for 
frigate tuna, n = 344.

Figure 8. Sample photomicrographs of frigate tuna otolith transverse 
sections with annuli counts and markings on the opaque zones 
observed, (a) aged 1-year-old (FL = 19.50 cm, OL = 1.85 mm, OW 
= 0.82 mm), (b) aged 2 years old (SL = 24.50 cm, OL = 2.53 mm, 
OW= 1.07 mm), (c) aged 3 years old (FL = 39.90 cm, OL = 3.94 mm, 
OW = 1.20 mm), and (d) aged 4 years old (FL = 40.90 cm, OL = 4.41 
mm, OW = 1.33).

3.4 Growth curve

		 Of the 344 fish individuals with intact 
otoliths, only 287 otoliths were successfully sectioned 
for age determination. Apart from the total number 
of sectioned otoliths, only 195 sections (66.9%) from 
individuals with actual sizes ranging between 17.6 and 
43.1 cmFL were successfully aged. Other sectioned 
otoliths were unreadable. Another approach to verify 
fish age is to provide a demonstration guide of the 
otolith growth variation at different age classes (Figure 
8).
	 Per sampling area, 113 otoliths were processed 
for the Western Celebes Sea, 55 for Sarangani Bay, 14 
for Moro Gulf and 12 for Davao Gulf (Figure 9). Only 
the Western Celebes Sea represented the recorded ages 
from one to four (Vieira et al. 2022), with size classes 
ranging from 19.0 to 44.0 cmFL (Figure 9). Based on 
the available data, only the age-length relationship 
of frigate tuna captured in the western Celebes Sea, 
which was well represented in terms of size class, was 
used in the succeeding presentation.
	 The fitted age-at-length data on the VBGF 
model (95% confidence level) indicates that as the 
frigate tuna grows in length, so does its otolith 
(Figures 10 and 11). Blue lines present the upper and 
lower limits of the 95% bootstrap confidence, while 

the equation Lt=62.1 gives the actual growth curve (1-
1.0016 e (-0.25517x)). The growth parameters, asymptotic 
length (L∞) and the Brody growth coefficient (K) of 
the frigate tuna observed were 62.1 cmF L and 1.0016 
year-1, respectively. The fastest growth rate observed 
is between one and three years old and exhibits a less 
steep growth thereafter (Figure 10).

4 .  D I S C U S S I O N

4.1 Length-weight relationship and somatic 
growth pattern

	 Based on the pooled dataset, this study 
demonstrated that frigate tuna observed positive 
allometric growth as ind	 icated by the exponent 
value (b>3) obtained via the power regression analysis 
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Figure 9. Midlength frequency distribution (FL range, cm) of the frigate tuna samples per sampling area that were successfully assessed for 
ageing analysis. Sarangani Bay (n = 55); Moro Gulf (n = 14); Davao Gulf (n = 12); and western Celebes Sea (n = 113).

Figure 10. Box plot of age estimates from frigate tuna from the 
western Celebes Sea, with age at length at settlement (0 cm at 1.5 
cm FL), n = 113.

Figure 11. Length-at-age data of frigate tuna caught in the western 
Celebes Sea fitted in a von Bertalanffy growth function (VBGF) 
model at a 95% level of confidence, n = 113.

(Figure 4). This result suggests that frigate tuna grows 
relatively faster in weight than its length. Several studies 
on frigate tuna revealed similar results in its somatic 
growth pattern (e.g., Siraimeetan 1985; Muthiah 1985; 
James et al. 1993; Ghosh et al. 2010, 2012; Tao et al. 
2012; Mariyasingarayan et al. 2018; Herath et al. 2019; 
Arnenda et al. 2021; Ajik and Tahiluddin. 2021; Vieira 
et al. 2022). This growth pattern is a common attribute 
of small and medium-sized pelagic fish species as they 
have physiologically and morphologically evolved 
to increase their body weight (e.g., high red muscle 
mass) for the energy they need to sustain swimming, 
spawning, prey hunting, and searching for favorable 
environmental conditions (Brill 1996; Griffiths et al. 
2009; Bernal 2011; Videler 2011). Similar observations 
have been reported with other pelagic species of the 

same body shape as the frigate tuna, such as anchovies 
(Plounevez and Champalbert 1999), sardines (Ganias 
et al. 2007; Ganias 2009; Queiros et al. 2019), herrings 
(Ivlev 1960), mackerels (Graham et al. 1983), round 
scad (Sululu et al. 2022), and many others.
	 The estimated asymptotic length using age-
growth data in this study at 62.1 cmFL was not far 
from what has been calculated for the country (Moro 
Gulf) at 63.0 cmFL by Ingles and Pauly (1984) using 
length-frequency data through ELEFAN II (Gayanilo 
et al. 2005). This study recorded only a maximum size 
of 44.7 cmFL in the Western Celebes Sea, whereas 
Calicdan-Villarao et al. (2017) recorded 55.0 cmFL 
from the Babuyan Channel in the northernmost part 
of the country. In other parts of frigate tuna’s known 
distribution, Collette and Nauen (1983) reported in 
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their catalog a maximum length of this species at 58.0 
cmFL collected off Sri Lanka and 51.0 cmFL from 
the Indian Ocean. Morice (1953) also documented a 
much higher maximum length at 65.0 cmFL from the 
eastern tropical Atlantic. In India, individuals were 
reported to have lengths greater than 50.0 cmFL/TL 
(Ghosh et al. 2012; Abdussamad et al. 2013; Hameed 
et al. 2021).
	 Despite several attempts, as mentioned, this 
study only acquired the largest individual, measuring 
44.7 cmFL from the Western Celebes Sea (Figure 5). 
A majority (26.9%; n=281) of the frigate tuna samples 
have sizes ranging only from 23.5 to 26.5 cmFL (Figure 
5). This size range fell over the recorded length at first 
maturity (Lm) values - 21.5–38.6 cmFL of the frigate 
tuna in the Philippines (Froese and Pauly 2000). 
The observed larger samples (38.5–44.7 cmFL, 4.7%; 
n=49) collected from the wet markets in Tawi-Tawi 
further strengthen the observation that the Western 
Celebes Sea is a breeding ground for frigate tuna, 
along with its other neritic tuna relatives as previously 
reported by others (Mamalangkap et al. 2018; Ajik and 
Tahiluddin 2021). On the other hand, the absence of 
large individuals would mean that they do not stay 
long in a given area as they are migratory species 
(Maguire et al. 2006; Gomez 2019), experiencing 
heavy fishing pressure (Floyd and Pauly 1984; Juan-
Jordá et al. 2011; Calicdan-Villarao et al. 2017) or die 
naturally for being a short-lived species (5 years old) 
(Tao et al. 2012).
	 Sampling tools used could also influence the 
availability of adults. Pechon et al. (2022) assessed the 
catch of tuna species at GSCFPC and discovered a 
similar observation which is that ring nets provided a 
wider length range of frigate tuna compared to those 
caught by purse seine nets. But so far, the size classes 
reported, regardless of fishing gears, are still within 
the range of 15.5–44.7 cmFL, with a mean of 25.5 
cmFL that covers the sexually matured frigate tuna, as 
reported by Froese and Pauly (2000).

4.2 Age and growth

		 This study reports the first examined 
relationship between the size (length) and age (otolith 
growth increment) of frigate tuna using sagittal 
otoliths with a computed L∞ of 62.1 cmFL (Figure 
11). Of all the frigate tuna otolith sections, only 39.4% 
(n=113) of the successfully sectioned otolith samples 
from the western part of the Celebes Sea were used for 
age determination. Despite this limitation, age-length 
data showed a strong relationship (Figure 11) after 

applying the box plot tool that discriminates outliers 
(Elumba et al. 2019).
	 Several studies on selected tuna species 
utilizing otolith as a tool in age estimation also noted 
similar difficulties in reading its growth increments. 
For example, Chang et al. (2019) observed irregular 
discernable rings in the otoliths of Pacific bluefin 
tuna from Taiwan. In addition, Rodriguez-Marin 
et al. (2007), Farley et al. (2013), and Andrews et al. 
(2020) also struggled to determine the first annuli of 
the bigeye, bluefin, and yellowfin tuna, respectively. 
Similarly, these difficulties in viewing recognizable 
growth rings and identifying the first annual increment 
in the frigate tuna otolith sections were observed in 
the present study. The quality of how each otolith was 
sectioned, including the factors mentioned above, was 
the main reason why only 66.9% of 287 intact otoliths 
were successfully aged.
	 Additionally, the value of each otolith 
morphometric parameter observed in this study 
supports the growing evidence of how minuscule 
the frigate tuna's otolith structure is (Table 2). This 
underpins that pelagic fishes typically have small 
otoliths (Robbins and Choat 2002). Given the fragility 
and minuscule size of the frigate tuna otolith, using 
it as a tool for age and growth estimation poses 
more challenges in addressing the knowledge gaps 
on this species' life history, population structure and 
dynamics, biology, and ecology.
	 Regardless of this impediment, the otolith 
increments observed for frigate tuna in this study 
revealed an age range from one to four years old, 
which is within the same age bracket as that of studies 
that utilized dorsal fin spine in South Brazil (Vieira 
et al. 2022). Similarly, for its closest relative, Auxis 
thazard thazard, Tao et al. (2012) also documented 
an age range from 0 to 5 years using the vertebrae 
annual growth increments of the individuals caught 
off Taiwan Strait (Table 3). Thus, this shows that the 
ageing analysis using otoliths of frigate tuna concurs 
with other studies utilizing different techniques, as 
mentioned (Table 3).
	 Undeniably, there is difficulty in ageing fishes 
with short lifespans (< 5 years), such as the A. thazard. 
However, a very distinct pattern was observed through 
diligence and patience in examining hundreds of 
sectioned otoliths (Figure 8). It was observed that the 
otolith not only grows in length and overall size but 
also, its transverse section develops into a distinct 
pattern (Figure 8). Specifically, the sulcal groove 
becomes more pronounced as the frigate tuna ages. 
Age 1 is characterized by a blunt protrusion at both the 
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Reference Size Range in 
FL (cm)

Tool Country Age 
Range

L∞ (cm) K (year-1) Tmax

Pillai and Ganga (2008) - LF India - 54.0 0.90 4

Abdussamad et al. (2005) 18.0 – 30.0 LF India - 52.9 0.07/mo * 3

James et al. (1993) - LF India - 56.0 0.77 -S

Kasim (2002) - LF India -
Female: 51.2 1.30 3

Male: 49.0 1.30 3

Ghosh et al. (2010) 20.0 – 47.9 LF India - 46.6 0.93 2

Ghosh et al. (2012) 18.0 – 55.9 LF India - 58.0 1.20 -

Calicdan-Villarao et al. (2017) 16.0 – 55.0# LF Philippines - 41.0 0.60 -

Abdussamad et al. (2013) 18.0 – 56.0 LF India 58.0 1.20 2

Lelono and Bintoro (2019) - LF Indonesia - 35.4 0.58 4.8

Silas et al. (1985) - LF India - 63.0 0.49 4

Zapadaeva (2021) - LF Russia - 48.6 0.48 -

Vieira et al. (2022) Female: 26.9 
– 49.4

Spine Brazil

0 – 4 yrs.
old Female: 47.7 0.47 4

Male: 26.5 – 
45.2

0 – 4 yrs.
old Male: 49.8 0.35 4

Armada (2004) - LF Philippines 
(Davao Gulf) - 40.5 0.85 -

Ingles and Pauly (1984) - LF Philippines 
(Moro Gulf) - 63.5 0.72 -

Tao et al. (2012) 19.8 – 45.6 Vertebra Taiwan 0 – 5 yrs. 
old 48.2 0.52 5

This Study 17.2 – 43.1 Otolith
Philippines

(western Celebes 
Sea)

1 – 4 yrs. 
old 62.1 1.00 4

Table 3. Summary of global studies that examined the age range and estimated the growth parameters [L∞ - asymptotic length; K (year-1) 
- Brody’s growth coefficient, and Tmax - maximum age] of frigate tuna using various methods (LF- Length Frequency, Spine, Vertebra, and 
Otolith). Size range recorded in Fork Length (FL).

*  - k (month-1)
#  - total length

outer canal of the sulcus in the ventral and dorsal arms 
of the otolith. At age 2, this structure starts to appear 
as a small bump, and at ages 3 and 4, these structures 
become more prominent. Without sophisticated 
machines, this pattern can also be used for age 
verification. It can be concluded that the higher the 
mentioned bump, the older the frigate tuna individual 
is like spines and vertebrae, otoliths can also be a 
helpful tool in estimating the growth of frigate tuna. 
Various studies also supported that otolith ageing 
offers an accurate evaluation of the life history and age 
of fish as compared with other hard structures (i.e., 
vertebrae, scales, and spines) (Marriott and Cappo 
2000; Khan et al. 2011; Ma et al. 2017). Moreover, 
Neilson and Campana (2008) used the radiocarbon 
method to evaluate otolith ageing. Its reliability has 
been attested before (Rodriguez-Marin et al. 2007). 
However, this process is expensive and not readily 
available in regions where frigate tuna abounds.

	 It was further observed in this investigation 
that individuals with lengths of 18.2–26.3 cmFL were 
found to be at least two years old (Figure 10). This 
finding supports what Tao et al. (2012) reported for 
A. thazard thazard. Additionally, the oldest specimens 
of frigate tuna obtained are four years old (Figure 10), 
indicating that this species may be captured before 
reaching their asymptotic length (Figure 11). As 
explained earlier, sizes greater than 44.7 cmFL were 
not sampled in the four areas examined (Table 3).

4.3 Calculated growth (VBGF curve)

	 The species’ highest calculated growth 
parameters using LF data was around 63.0 cmFL from 
the Indian Ocean and the Moro Gulf of the Philippines 
(Ingles and Pauly 1984; Silas et al. 1985; Table 3). Using 
age-length estimates, this study yielded a maximum 
size estimate of 62.1 cmFL. While others estimated 
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L∞ values were 49.8 cmFL for male specimens and 
47.7 cmFL for female individuals (Vieira et al. 2022) 
and 48.2 cmFL (Tao et al. 2012) for both sexes. The 
observed discrepancies in growth, as previously 
mentioned, can be attributed to various factors, such 
as environmental conditions (Murua et al. 2017) and 
food availability (Brett 1979; Wootton 1999; Desai and 
Singh 2009) that can retard or increase their growth 
length but not their age. This was observed in Figure 
4e, wherein some individuals had longer lengths buts 
weighed less or vice versa (Figure 4c).
	 Similarly, the growth coefficient (K) varies 
across sites or habitats. This study appeared to have 
a higher value (K=1.0016 yr-1) than what other 
researchers have found (Table 3) but lower than what 
others have reported, from K=1.20–1.30 yr-1 (Table 3). 
The calculated L∞ (62.1 cmFL) value for frigate tuna 
conforms to the previous report by Silas et al. (1985) 
in India and by Ingles and Pauly (1984) in Moro Gulf, 
who recorded maximum lengths of 63.0 cmFL and 
63.5 cmFL respectively. Further, it is larger than the 
largest frigate tuna individual recorded by Calicdan-
Villarao (2017) at 55.0 cmFL in the Babuyan Channel, 
north of the Philippines. In contrast, it is smaller than 
Morice (1953) reported at 65.0 cmFL from the eastern 
tropical Atlantic. Such large sizes of frigate tuna from 
these areas can be attributed to other factors probably 
not examined in this study.

5. C O N C L U S I O N  A N D
  R E C O M M E N D A T I O N

	 This study was the first report to examine 
the relationship between the size (length) and age of 
frigate tuna, Auxis thazard, based on sagittal otolith 
growth increments in the Western Celebes Sea. It also 
highlights a very distinct pattern of otolith calcification 
for this species. First, a thicker deposition occurs in 
the dorsal and ventral regions of the otolith, resulting 
in a deeper sulcal groove.  Second, protrusions/bumps 
at the outer canal of the sulcus in both regions also 
become prominent as the frigate tuna ages. These 
observations provide secondary information to 
double-check the age estimates. Although limited 
otolith samples were successfully aged, application of 
the box plot technique eliminated under- and over-
estimation of its age. Embedding the fragile otolith 
using an epoxy mold is highly recommended to make 
it durable for sectioning procedures. The manual 
grinding using sandpaper cannot be employed once 
the otolith is embedded in an epoxy mold. Thus, a 
high-precision otolith grinder can then be utilized in 
the sectioning process. Furthermore, a good quality 

stereo microscope with a high-resolution camera is 
highly recommended for such a study. Finally, extra 
care must be performed throughout the handling of the 
otolith, from extraction to resin embedding, to avoid 
spoilage. If affordable, radiocarbon dating is highly 
recommended for an accurate age determination. 
The limited studies on frigate tuna can be attributed 
to their migratory behavior. All ages or various size 
classes cannot be observed in a single body of water 
alone. Sampling must be conducted within its range 
of distribution. Moreover, it is highly encouraged that 
future research endeavors should look into the impacts 
of the varying environmental conditions on their age, 
growth, and reproduction as they move from one area 
to another.
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